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The regularities of one-dimensional longitudinal wave propagation in nonlinear media 
are described in [1-5]. The substantial influence of the kind of dependence between the stress 
and strain in the material on the nature of the wave process and the possibility of the occur- 
rence of discontinuous solutions (shocks) are noted [i, 2]. Self-similar motions for a quite 
general form of the stress-strain dependence were investigated in [3] for an instantaneously 
applied constant stress given on the boundary of the medium. Certain self-similar problems 
were studied in [6]; however, this work contains inaccuracies. 

Conditions are indicated in this paper for which wave propagation problems will be self- 
similar. Such conditions assure assignment of a power-law dependence between the stress and 
strain in the material, and a power-law change with time in the quantities governing the bound- 
ary conditions. Appropriate solutions are found. The method of characteristics is used ex- 
tensively in seeking the solutions. A combination of this method with the self-similar repre- 
sentation of the solution permits writing it in convenient form. In the case of discontinuous 
solutions, application of the method of characteristics if fraught with difficulties. Conse- 
quently, traditional methods that are based on the properties of self-similar problems must 
be used. This would permit obtaining new results and giving an estimate of certain assump- 
tions imposed in application of the method of characteristics. 

i. Let us examine the question of the conditions under which the solution is self-sim- 
ilar. The one-dimensional medium is treated as a homogeneous rectilinear rod of constant 
unit cross section. Let u be the displacement of rod particles along its axis, p the stress 
in the transverse section, x the coordinate measured to the right along the length of the 
rod from its left endface superposed at the origin, t is the time, s = ~u/Sx is the strain, 
and p is the material density. Tensile stresses are considered positive. The stress and 
strain are related by the dependence 

p = E/(e), ( 1. t ) 

where E is a constant with the dimensionality of the stress, and f(s) is a dimensionless func- 
tion of e. The rod state of strain is described by the equation [I] 

02tt/Ot 2 = af(8)@ftt/~)xf, af(g) = Ep- td] /de .  ( 1 . 2 )  

The s o l u t i o n  o f  t h e  p rob lem in  t h e  c a s e  o f  s e l f - s i m i l a r  mo t ion  i s  s o u g h t  in  t h e  form [ 7 - 9 ]  

u = u , t ~  (~); ( 1 . 3 )  
p = p , t %  (~), ( 1 . 4 )  

where ~(~) and ~(~) are dimensionless functions of the dimensionless variable 

- zl@t~); ( 1. s) 

~, ~, and ~ a r e  e x p o n e n t s  which  a r e  unknown as y e t ,  and u , ,  pc ,  and b a r e  d i m e n s i o n a l  c o n s t a n t s .  
Substituting (1.3) into (1.2) with (1.5) taken into account yields 

F~<~b-'-'t-2~'-'(d//de)r =: ~$z t~"  - -  ~(fa -- ~ -- t ) ~ '  -? ~(a -- 1)% ( 1 . 6 )  

Here the primes denote differentiation with respect to the variable ~. The derivative df/dE 
is a function of the strain E, which is, in turn, determined by the formula 

~ = Ou/Ox = u , b - ~ t ~ - ~ q / .  ( 1 . 7 )  
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Necessary for the possibility of a self-similar solution to exist for an arbitrary form 
of the function f(s is that the time not enter explicitly in (1.6) and (1.7). This condi- 
tion is satisfied when the exponents of the t in (1.6) and (1.7) are zero. Hence, ~ = ~ = i 
is obtained. 

If (1.7) is explicitly independent of the time, then according to (i.I) the stress should 
also be explicitly independent of t. In this case, 6 equals zero in (1.4), and we have p = 
p,~(0) = const on the rod endface (~ = 0). Therefore, for an arbitrary dependence between 
p and e the self-similar solution can be obtained for a constant stress (instantaneously ap- 
plied) or strain on the rod endface [3]. 

A further extension of the class of self-similar motions is possible by giving the de- 
pendence (i.i) a form which would permit deducing the time from the derivative dr/de in 
(1.6) when substituted into (1.7). For this it is sufficient to take the power-law depen- 
dence 

p = E/(~) ,  /(~) = 1~1" sign e, p > 0~ (1 .8 )  

where ~ i s  a given exponent .  S u b s t i t u t i n g  the  new va lue  of  d f /d~  i n t o  (1 .5)  wi th  (1 .7 )  t aken  
i n t o  accoun t ,  and equa t ing  the  exponent  f o r  t to  ze ro ,  we o b t a i n  an equa t ion  f o r  a and ~: 

( I  - -  ~)~ q- ( i  + ~ )~  = 2. ( i . 9 )  

Subst i tu t ing (1.4) and (1.7) into (1.8) y ie lds 

r = (E /p , )  ( u , / b ~  t (=-~)"-~ I $' l" sign ~' ,  

from which there follows 

(1.1o) 

(= - -  p )~  - -  a = O. ( 1 . 1 1 )  

The third equation relating the exponents ~, B, and 6 is obtained from considering the bound- 
ary conditions. We assume that a compressive stress is applied to the rod at the left endface 
for x = 0, while it extends without limit to the right (for a rod of finite length the self- 
similarity is spoiled as a rule [I0]). The structure of the expression (1.4) indicates that 
the stress in the endface section (~ = 0) should change according to the power law 

p =--p0t~ ~0~ 

where P0 and X are given constants. Equating (1.4) and (1.12) for ~ : 0, we obtain 

8 = ~ ~ (0)  : - -  P o / P , .  

Solving ( 1 . 9 ) ,  ( 1 . 1 1 ) ,  and the  f i r s t  e q u a l i t y  in (1 .13)  j o i n t l y ,  we f i n d  

a = I + [~(~ + 1)I(2~)1~ ~ = t + [~(~ - -  t ) / ( 2~ ) ]~  ~ = ~. 

The c o n s t a n t s  um, 
problem E, p, P0. 
combinations: 

(1.12) 

(1.13) 

(1.14) 

p,, and b should be expressed in terms of the governing parameters of the 
Using dimensional analysis of the quantities [7], we can form the following 

b = (Elp)U2(Elpo)(~-tol(2,); (1.15) 

u ,  = ( E / p )  1/~ @0/E)("+1)~"); 
P* = P0" 

Substituting these values into (1.6) and (i.i0), we have the equations 

(1.16) 

(1.17) 

I p ~  ~ - ~ I ~ ' i . - I ] ~  ' ' -  p<2= - p  - i ) ~ '  + = (=  - 1)m = o; ( 1 . 1 8 )  

= I~'I" sign ~'. (1.19) 

The second equal i ty  in (1.13) and Eqs. (1.17),  (1.19) y ie lds the boundary condit ion at ~ = O: 

~(0)  = ~ ' (0)  = - i ,  (1.20) 
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The differential equations obtained permit solution of the problem formulated. However, 
in many cases the methods based on using the characteristics of equations of hyperbolic type 
afford the possibility of reaching the result more simply; hence, they are utilized extensive- 
ly below. The exception is the important case of discontinuous solutions for which it is 
necessary to turn to direct integration of (1.18) and (1.19). 

For discontinuous solutions it is also necessary to take account of conditions resulting 
from general theorems of mechanics. Let us construct these conditions. According to the 
theorem on the change in momentum of a mechanical system, the momentum acquired by a rod should 
equal the impulse of the external pressure (1.12) acting on the left endface of the rod in 
the time interval under consideration. On the basis of a theorem on the change in energy, 
the sum of the kinetic and potential energies of the rod equals the work of the pressure 
(1.12) applied to the rod enface [ii]. The mathematical description of the conditions re- 
sulting from these two theorems takes the form 

J(~ ~ ' ) d ~  = 11(k + t); ( 1 . 2 1 )  
0 

[o.5 (~r - ff~r + (~ + ~)-~ l(,o' t~+~1 d~ ~r (0)/(~ + k), 
o 

(1.22) 

after substitution of (1.3) and (1.12) and utilization of (i.14)-(i.17), where~ (0) is the 
value of the function @(~) for ~ = 0, and the upper limit of integration corresponds to the 
extent of the rod involved with strains. 

2. Let us consider the wave motion in a rod subjected to the stress (i.12)]by assuming 
that it is at rest at t = 0. In this section we limit ourselves to the consideration of the 
case ~ # 0 corresponding to a monotonic growth in the stress at the rod endface. First, new 
dimensionless variables 

x, = x/L, "r = t/T, U = u/L, V = vT/L 

are introduced, where L and T are quantities with the dimensionality of length and time 

n = ( E / p ) l l i ( E / p o ) l / k  , T = (E/po) l /~  , ( 2 . 1 )  

v is the velocity of the rod particles v = 8u/~t. In the new variables (1.2) becomes 

2 2 O~U/O~ 2 = a ,  (e) O'~U/Ox~, a ,  (e) = d / /ds .  ( 2 . 2 )  

The relationships 

= x,I '~$, U = "r~q) (~), p / E  = T,6~(~), S = OU/Ox, ;  ( 2 . 3 )  

V = OU/OT = ~ - 1 ( ~ _ ~ , )  

can  a l s o  be o b t a i n e d .  We w r i t e  t h e  b o u n d a r y  c o n d i t i o n  ( 1 . 1 2 )  
a c c o r d i n g  t o  ( 1 . 8 ) ,  in  t e rms  o f  t h e  s t r a i n  

( 2 . 4 )  

in the form p0/E = -~I0, or 

~0 = - . Y <  ( 2 .  s )  

where  t h e  s u b s c r i p t  0 d e n o t e s  t h e  v a l u e  o f  r f o r  x = 0 and o f  t h e  v a r i a b l e  ~ ( " d i m e n s i o n l e s s  
t i m e " )  when i t  i s  in  t h e  b o u n d a r y  c o n d i t i o n  f o r  x = 0. 

Le t  us c o n s i d e r  t h e  c h a r a c t e r i s t i c s  o f  t h e  d i f f e r e n t i a l  e q u a t i o n  ( 2 . 2 )  [1 ,  4,  5, 12] .  
Two f a m i l i e s  o f  c h a r a c t e r i s t i c s  d e f i n e d  by t h e  e q u a t i o n s  

d ' r / d x ,  = -4- t / a ,  (~) 

can be c o n s t r u c t e d  in  t h e  p l a n e  w i t h  c o o r d i n a t e  axes  x ,  and ~. 

V = f a ,  (e) de + C~, V = - -  ] a ,  (e) d~ + C 2 
0 o 

The conditions 

(2.6) 

( 2 . 7 )  
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are satisfied on the characteristics. The plus and minus signs in these formulas are con- 
ferred on characteristics of positive and negative slope. The constants C I and C 2 corre- 
spond to the two mentioned mentioned families of characteristics and have values on each char- 
acteristic. 

Later, in addition to the variable ~, the variable 

0 = ~/~0 ( 2 . 8 )  

w i l l  be  u s e d .  As was n o t e d ,  ~0 c o r r e s p o n d s  t o  t h e  v a l u e  o f  ~ a t  x = 0.  T h i s  q u a n t i t y  c a n  
be  c o n s i d e r e d  a s  a p a r a m e t e r  d e n o t i n g  any  c h a r a c t e r i s t i c  t a k i n g  t h e  o r i g i n  on t h e  a x i s  OT f o r  
an a p p r o p r i a t e  v a l u e  o f  ~Q. Shown i n  F i g .  1 ( f o r  ~ < 1) a r e  t h e  s o l i d  and  d a s h e d  l i n e s  o f  
the characteristics of positive and negative slope marked by values of ~0. Graphs of the 
dependence between x, and �9 for certain values of ~ = const are superposed by dash-dot lines. 
In considering a specific characteristic (~0 = const) it is seen that besides the values of 
x, and �9 definite values of the quantities g and 0 correspond to each of its points, and can 
be selected as new variable to describe the equations of the characteristics. 

The form of the solution of the stress wave propagation problem depends substantially 
on (1.8). Its graphical display in the coordinate axes e, f(E) can yield convexity or con- 
cavity with respect to the axis ~, which is governed by the sign of the derivative d2f/de = 
or the value of ~ in (1.8) (p less or greater than one) [i, 2, 4, 5]. 

Let us consider the case p < i. The characteristics of positive slope form a bundle 
of diverging lines in the coordinate plane x,O~ in this case (see Fig. i). The character- 
istics of negative slope will tend asymptotically to the Ox, axis for the dependence (1.8) 
taken. On the abscissa axis (~ = 0), by virtue of the zero initial conditions ~ = 0 and 
V = 0 hold and, consequently, the constant C 2 in the second equation in (2.7) is zero for all 
the negative-slope characteristics, i.e., 

E 

V = - -  . [ a ,  (s) ds. ( 2 . 9 )  
0 

This equation should be satisfied in all planes of the variables x,, ~, including on all pos- 
itive-slope characteristics. For (2.9) to be compatible with the first equation in (2.7) 
that yields the condition on these characteristics, it must be considered that 

.E 

C 1 = - -  2 S a ,  (e) de = const, 
0 

which can be satisfied only if e and V are, respectively, constant on each positive charac- 
teristic [I, 4, 5]. 

We integrate Eq. (2.6) of the positive-slope characteristics by taking into account that 
e is constant and equal to e 0 in (2.5), i.e., the value for x, = O: 

-- ~0 = x,la, (80). (2. i O) 

Further manipulations, in which the second expression in (2.2), and formulas (1.8), (2.5), 
(i.14), (2.8) are used, successively yield from (2.10) 

0 - I = (2.n) 

Since the deformation is conserved invariant along the positive-slope characteristic, the 
stress that equals p/E = --~%0 by virtue of boundary condition (1.12) also remains constant. 
Equating this value to the third equation in (2.3), and taking account of (1.14), we obtain 
a formula determining the desired solution of (1.4): 

~(~) = - 1 / 0  ~. ( 2 . 1 2  ) 

I t  i s  n e c e s s a r y  t o  move a l o n g  t h e  c h a r a c t e r i s t i c  i n  c o m p u t i n g  ( 2 . 1 2 ) .  T h i s  i s  e q u i v a l e n t  
to the fact that the quantity 0 will be expressed in terms of ~ by using the dependence 
(2.11). 
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Integrating in (2.9), we obtain 

v =  - 2 / ~  (~ + I)-~I ~ ?+~>/~ ~J~H ~. 

The quantities that enter here on each positive-direction characteristic remain con- 
stant and equal to their values for x, = 0 (2.5), which yields with (1.14) taken into account 

V =  2 / ~ ( ~  + 1 ) - ~  - ' .  ( 2 . 1 3 )  

To obtain the function ~(~), the value (2.12) is substituted into (1.19) and integra- 
tion is performed: 

where C is an arbitrary constant of integration. The variable ~ was replaced in the integra- 
tion by the variable @ by using (2.11). To find C, (2.14) is substituted into (12.4), which 
should equal the constant value (2.13) on each positive-slope characteristic. It can be 
proved that C = 0 should be taken to satisfy such an equality. By using (1.14) we reduce 
(2.14) to the form 

q,(~) = 21/~(~ + t) -~-~o-~[t  + o.5=(t - ~ ) ( o  - 0] .  (2 .15 )  

Here, as in (2.12), the variable 0 should be considered as a function of ~ defined by (2.11). 
In executing practical computations it is convenient to find the dependence of the functions 
(~) and ~(g) on 0, and then to determine the appropriate values of ~ from (2.11). 

Graphs of the quantities ~(~) and ~(~), computed for D = I/3 and I = 1/5, are repre- 
sented in Fig. 2. The characteristics corresponding to this case are constructed in Fig. 
i. Direct numerical integration of the differential equations (l.18)and (1.19) on a computer 
yielded results in complete agreement with an analytic computation. Conditions (11.21) and 
(1.22) are satisfied. 

The solution obtained yields instantaneous propagation of the perturbations along the 
rod. This is explained by the fact that small deformations correspond to small times as the 
stress grows smoothly on the rod endface. For small deformations the stress-strain depend- 
ence (1.8) has a large derivative df/ds for ~ < i, on which the quantity a,(E) in (2.2) that 
characterizes the rate of perturbation propagation depends directly. In the limit as g + 0, 
there holds a,(e) § =, i.e., the perturbation velocities are infinite; however, their ampli- 
tudes turn out to be infinitesimal here. 

Let us turn to the case ~ > i (d2f/de 2 > 0). As before, we consider ~ # 0. If we move 
along the axis OT of the coordinate plane x,O~, then, according to (2.6), the slope of the 
positive characteristics will diminish continuously at the axis for ~ > i. The character- 
istics here form a converging family of lines. This means that the perturbations occurring 
at the left end of the rod (x = 0) in a later period will overtake the perturbations being 
propagated earlier by producing conditions for the occurrence of a discontinuous solution 
(shock wave). Positive and negative direction characteristics are represented by, respec- 
tively, solid and dashed lines in Fig. 3 for D > i. Also shown there by dash-dot lines are 
dependences between x, and ~ for certain values of ~. 
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We mentally draw a third coordinate axis U perpendicularly to the plate x,O~ and which 
will denote the elevation of points of the integral surface U(x,, ~) of the initial differ- 
ential equation (2.2) above the plane x,O~. Characteristic lines whose projections on the 
plane x,O~ yield the characteristics examined above [12] can be drawn on the integral sur- 
face. The positive direction characteristics that are infinitely close together intersect 
at points forming a line that is the envelope of the family of characteristics. This enve- 
lope is the projection of the cuspidal edge of the integral surface on the plane x~O~. Above 
the part of the x~O~ plane located between the axis Ox... and the envelope, there is no inte- 
gral surface and no perturbations. The derivatives of~U(x,, ~) cannot be continuous in the 
neighborhood of the cuspidal edge [12]. The envelope of the characteristics or any curve 
on which a discontinuity of the solution occurs can be considered as the boundary curve for 
the negative-slope characteristics. The values of the strains and the rates are not known 
on it in advance; consequently, the magnitude of the arbitrary constant C 2 in the condition 
(2.7) on the negative-slope characteristic remains undetermined. In this case, the method 
of proof used above to establish the constancy of the deformation on the positive-slope char- 
acteristics does not pass. Therefore, it is impossible to assert that these characteristics 
will certainly be straight lines and (2.9) turns out to be correct on them. The solution 
in which the characteristics will be rectilinear should be considered as one of those possible. 

Because the right sides of the equations of the characteristics (2.6) remain undeter- 
mined, utilization of the method of characteristics is fraught with difficulty. Consequent- 
ly, the solution is sought by numerical integration of the differential equations (1.18) and 
(1.19). The characteristics can be found simultaneously during the computation. To do this 
their equations (2.6) are manipulated as follows. The value ~ = 8U/Bx, = T~-~ ' is substi- 
tuted, and the differential dx, is expressed in terms of the differentials d$ and d~ by us- 
ing the first equation in (2.3). Equations with separable variables are obtained, which 
after integration and subjection to the initial conditions (for ~ = 0, �9 = ~0 or 8 = i), yield 
the following equations for the characteristics in general form: 

0 = exp [~ ] _+_ .[ I <'<- -% . 

0 

The upper signs in this expression refer to the positive-slope, and the lower to the negative- 
slope characteristics. 

Equation (1.18) has a singular point 61 at which ~" tends to infinity, while ~" has a 
discontinuity. This point is determined by the disappearance of the coefficient of ~", i.e., 
by satisfaction of the equality 

~ = /~W(~)I (~-~)i~. (2.16) 

The value ~i corresponds to the location of the envelope of the characteristics whose equation 
on the x,O~ plane has the form x, = ~i~8. The envelope is shown in Fig. 3 by dash-dot line 

= 0.79. 

Integration of (1.18) was by a numerical method of the MIR-2 and Elektronika-60M com- 
puters. The factorization method was used from the zeroth value of ~ (from the left end) 
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for which just the one boundary condition (1.20) is known. Theotherconditionof ~(0) for 
= 0 was given arbitrarily and refined by the results of the factorization to the right end. 

By giving a set of values of ~(0) at the left and, a set of solutions has a discontinuity 
of the derivative at certain points can be obtained, among which o~e physically allowable 
should be selected [12]. The following should be taken into account for the selection of 
this solution: the natural condition about the displacement on the shock front being zero, 
which, taking (1.3) into account, is written in the form 

q)(~,) = 0 ( 2 . 1 7 )  

(~.~ is the value of the variable ~ on the wave front); theorems about the change in momentum 
(1721) and the change in energy (1.22); mass, momentum, and energy conservation laws direct- 
ly on the front of the discontinuity. If it is considered that the rod is at rest in front 
of the wave front, then the mass conservation law and the theorem on the change in momentum 
yield a condition on the front of the discontinuity [4] p = -pDSu/St (D is the propagation 
velocity of the front of the discontinuity). The value of D can be determined from (1.5), 
where the quantity g corresponds to the location of the front $ = ~,: 

D=dx/dt=$,b~t~-L 

Using this value, as well as (i.3), (1.4), (i.14)-(I.17), (1.19), and (2.17), the condition 
on the front of the discontinuity can be reduced to the form 

The equations of the characteristics and the integrals in (1.21) and (Io22) were computed 
and condition (2.18) was also verified during execution of the calculations on a computer 
simultaneously with integration of (1.18) and (1.19). The computations were performed for 
= 3 and % = I. In the first variant of the computation it is assumed that the singularity 

$i of (1.18), determined by (2.16), is simultaneously the point of location of the shock 
front. Consequently, the condition (2.17) that the displacement equals zero at this point 
is taken as the basis for performing the numerical factorizations. The results obtained show 
that the theorem about the change in energy is satisfied with a certain error (8.5%), while 
the theorem about the change in momentum and condition (2.18) are not satisfied. Moreover, 
the momentum acquired by the rod turns out to be greater than the pressure pulse applied to 
the endface, which contradicts the physical meaning. Let us note that (2.18), formulated 
for the front of the discontinuity, cannot generally be satisfied at the singularity gz, 
whose location is determined by (2.16), since these formulas differ by a factor of ~, mak- 
ing them incompatible at one point. The positive-direction characteristics for the case con- 
sidered are somewhat curved in the plane of the variables x, and T. Therefore, it is impos- 
sible to consider this version of the solution physically allowable. 

In the second version, the location of the front $, is not related to the singular point 
$i but is determined from the condition that the displacement on the front vanishes simul- 
taneously with compliance with the theorem on the change in momentum (1.21). Computations 
showed that the wave front is closer to the left end of the rod than the singular point. The 
condition (2.18) on the front is satisfied here. An energy loss occurs, as is noted in [2, 
3]. The results of computing the quantities @(~) and ~($) are represented in Fig. 4 by solid 
curves. The part of the solution not realizable, which lies between the wave front and the 
singular point ~i, is shown by the dash-dot lines. Figure 3 yields a portrait of the charac- 
teristics of the second version of the computation (H = 3, X = i). The dash-dot line for 

= 0.612 in it determined the wave front location. The envelope of the characteristics cor- 
responds to the value g = 0.79. The positive slope characteristics are quite close to 
straight lines. The solution obtained should be considered allowable. 

Let us examine the question of the possibility of constructing a solution for D > 1 under 
the assumption that the positive-direction characteristics are straight lines. The solution 
has the same form as for D < i, (2.11), (2.12), (2.15). The singular point of (1.18) has 
the value ~i = ~(~ - l)B-i$ -~ in this case. Computations performed for D = 3, ~ = 1 show 
that the conditions (1.21), (2.17), (2.18) are satisfied for $ = 0.687, 0.555, 0.621. This 
means that they cannot be satisfied simultaneously for certain values of g, governing the 
location of the front of the discontinuity. Consequently, the solution based on the assump- 
tion of rectilinearity of the characteristics can be considered only approximate. The func- 
tions ~(~) and ~(~) of this solution are shown in Fig. 4 by dashes. The location of the shock 
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is referred provisionally to the point where the displacement (2.17) vanishes. The unrealiz- 
able part of this solution lies ahead of the wave front up to the singular point $i. It is 
shown by dash-dot lines. The results of the approximate and exact solutions turn out to be 
close. Sufficiently good agreement is obtained also for another computational case: p = 
3, k = 1.5. 

3. We obtain the solution for an instantaneously applied constant stress (1.12) ~ = 0 
investigated in [i, 3, 5] for an arbitrary dependence (i.i). For % = 0 the formulas (2.1) 
are meaningless; hence, the original variables x and t are used in examining the character- 
istics. The equations of the characteristics and the conditions on them, analogous to (2.6) 
and (2.7), are written in the form 

d t / d x  - -  +___ l la  (s), v = ~ ~ a (e) de + Ca, ~. ( 3 . 1 )  
0 

The quantities (1.14) = = I, ~ = i, 6 = 0 for which (1.18) dissociates into two equations 

~" = 0, ~ -- ~I~'I~ -I = 0 

correspond to the value k = 0. Their integrals have the form 

= A1 -~ A2[, ~ = i(~ -- I)(9 + I)-1~11(I-~)~ (~+I)/("-I) ~- A3, (3.2) 

where A• A 2, and A a are arbitrary constants of integration. 

Let us consider the case p < I. We use the method of characteristics. Using the method 
analogous to that applied in the previous section for p < i, it can be shown that the posi- 
tive-slope characteristics are straight lines, while the strains and the velocities on them 
are constants [I, 4, 5], and the second equations in (3.1) are transformed into 

= - ] = - 2 Vg(  + I I 
O 

(3.3) 

in the whole domain of the variables x and t. For x = 0, by virtue of the boundary condition 
for % = 0 and Eq. (1.8), the strain equals the constant value 

e = % = --(polE)Ira. (3.4) 

We integrate the equation for the positive-slope characteristics (3.1) by taking into account 
that the deformation is constant on them and equal to (3.4): 

t - -  to = x / a ( ~ o ) .  ( 3 . 5 )  

Here  to  i s  t h e  v a l u e  o f  t h e  t i m e  r e f e r r e d  t o  t h e  Ot a x i s  o f  t h e  xOt p l a n e  ( F i g .  5 ) .  The 
c h a r a c t e r i s t i c s  a r e  p a r a l l e l  t o  e a c h  o t h e r ,  w h i l e  t h e  s t r a i n s  and s t r e s s e s  a r e  i d e n t i c a l  
e v e r y w h e r e  i n  t h e  domain  l y i n g  a b o v e  t h e  c h a r a c t e r i s t i c s  OB, i . e . ,  p = -P0 = c o n s t .  Hence ,  
by u s i n g  ( 1 . 4 )  f o r  6 = 0,  ( 1 . 1 7 ) ,  and ( 1 . 1 9 ) ,  we h a v e  
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On the basis of (3.3), (3.4), and (I.16), it is possible to obtain in this same domain 

~, = :z 1 / ~  (, .  + ~)--~ V~'/~,  (P0 /~) (~~  ~"(~> = :~ ~ (~  + i )  - ~  ~ .  = ~ o . ~ .  

We equate the value of the derivative from (1.3) to this (~ = $ = i) 

v au,/at u . [ ~ ( ~ )  ~ ' = = _ ~ (~)].  

Taking account of (3.6), we obtain 

(3.6) 

r = z V [ ( ~  ~ i )  -~ - ~. ( 3 . 7 )  

The limit of applicability of (3.6) and (3.7) is determined by the location of the character- 
istic OB. Its equation follows from (3.5) for t o = 0 and has the form x/t = a(g0). By us- 
ing (1.5) for $ = i, the second formulas of (1.2) and (3.4), this expression is reduced to 
the equality $ = /~, governing the domain of action of the formulas mentioned. In the domain 
lying below the line OB, the characteristics emerge from the origin in the form of divergent 
lines [i, 4, 5]. The deformation is constant on each characteristic; however, it varies from 
one characteristic to another. Integrating the first equation in (3.1) for this case, we 
obtain 

x/t = a(~) = F~ V K/pi~ I <.-I"2 

Under further manipulation the left side of this equality is expressed in terms of $ (1.5) 
and the right side in terms of ~($) by means of (1.8) and (1.4). Solving the equality ob- 
tained for ~($), we find 

Integrating the second equation, we have 

~(~) = (i -- ~)(I -}- ~)-I~U(I-~)~-(~+~)/O-~). (3.9) 

The arbitrary constant that appears during integration vanishes, as can be confirmed by using 
the property of continuity of the functions (3.7) and (3.9) during passage through the point 

= /~ determining two domains. 

Therefore, for p < i, the solution is determined by (3.6) and (3.7) for ~ ~ v~, and 
(3.8) and (3.9) for ~ ~ r The expressions obtained correspond to (3.2). Infinitely small 
perturbations are propagated instantaneously over the length of the rod. The explanation 
for this phenomenon is presented above. 

For p > 1 (I = 0) a constant intensity stress wave [3] to which the first formula in 
(3.2) corresponds is propagated over the rod. According to (1.20), A 2 = -i, which yields 
~'(~) = ~(~) = -I. We have for the displacement (1.3) 

u = u , t ( A l - - ~ ) = u , b - ~ ( D , t - - ~  ~r x<~D,t~ u=O ~r x > D , t ,  (3.10) 

where D, = Azb is the velocity of wave front propagation. It cannot be determined from the 
differential equation but is found on the basis of the theorem about the change in momentum. 
The appropriate formula written for the wave front [4], P0 = pD.,.v, yields, after substitution 
of the value v = 3ulSt computed from (3.10), D, = /E~(P01E)(P-~)/(2P). We take the oppor- 
tunity to mention a misprint admitted by the author in [13]: In the expression for ~i after 
(4.3), /Dm-should be replaced by /D--/m. 
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MODULI OF ELASTICITY OF MATERIALS IN EXTENSION AND COMPRESSION 

A. M. Zhukov UDC 539.3 

In recent years there have been extensive developments in the multimodulus theory of 
elasticity. This theory assumes a material to be homogeneous, but to possess different mod- 
uli of elasticity for pure extension and compression in a fixed direction. 

Experimental values of the modulus of elasticity for extension Ee and compression Ec 
were presented in [i]. The reliability of some of these values is doubtful. 

For the vitreous plastics KS-30 and AS-30, based on capron and amide resins, respective- 
ly, the difference between the moduli at room temperature reaches about 700% of the smaller 
value. The equipment and methods used for testing were described in [2] (whence this in- 
formation was taken). Specimens in the form of double spades were used for the extension 
tests. The equipment used for measurement of deformation was not indicated. Specimens i0 x 
i0 x 15 mm were tested under compression, with the relative velocity of the reference plates 
toward each other being i0 mm/min, a value which the authors of [2] erroneously term the de- 
formation rate. 

The specimens tested in extension were of a variable cross section. Under tension not 
only extensive stresses varyingover specimen length, but also transverse and tangent stresses 
were produced. None of this was considered in processing the experimental results. 

Due to friction on the faces and pressure of the reference plates, under compression a 
complex stress state developed within the specimens, inhomogeneous over volume. Calculation 
of this state would be extremely difficult, but its existence cannot be neglected. 

The tests under consideration and the subsequent processing of the data were carried 
out improperly, producing unreliable data. Incidentally, the curves presented in Fig. 1 of 
[2] do not have linear initial segments, so that it remains unclear in what manner the moduli 
of elasticity were determined. 

Moduli Ee and Ec for polymethyl methacrylate, taken from [3], were presented in [i]. The 
differences between the moduli reach 100% of the smaller value. 

The stresses acting on the specimen were measured by a photoelectric-optical dynamometer, 
described in [4], which noted the shortcomings of this device: nonlinearity of the relation 
between photocurrent and stress, and the necessity of frequent calibration to allow for fatigue 
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